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Abstract

The cnergy operator in AdS supersymmetry is formally positive, i.e., If ~ 3 _{Qa, @1}, but
in supersymmectric ficld theories the standard encrgy density is not nceessarily positive. Further,
calculations of < JI> by ¢-function regularization of the sum of boson and fermion mode cnergics
in a supermultiplet gives non-zcro results. In two-dimensional interacting field theories with
AdS supersymmetry, we calculate the cnergy operator and the olher O(2,1) generators from
the supercharge anticommutator {Q,,Q&} by canonical methods, and we {ind gencrators which
differ from the standard oncs by surface terms. The improved cnergy densily is non-negalive
and vanishes only in supersymmectric configuralions. We prove that radiative corrections Lo the

improved < /> vanish Lo all orders in perturbalion theory in supersymmetric vacua.
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[. Introduction.

[n a supersymmelric ficld theory in Minkowski space, there is a striking relation between
the vacuum cnergy and preservation or spontancous breakdown of supersymmetry [1,2]. Exact
supersymmetry implics that the vacuum cnergy vanishes to all finite orders of perturbalion
theory, and conversely. Spontaneous breakdown implics that the vacuum encrgy is positive,

and conversely. Heuristically, Lhese facts follow [rom the positivity of the energy operator [f ~

¥ou{@a, Q% } where Qq is the spinor charge.

In this note we explore the corresponding situation in supersymmetric field theories in anti-de
Sitter space which occurs as a natural space-time background in supergravity theories both in
d = 1 [3] and higher [4] dimensions. The large cosmological constant is a scrious prablem in such

theories, and one may view the present work as part of a long range study of that problem.

In a fixed AdS background of d = 2 or 4 dimensions, supersymmetric field theories are
invariant under transformations of the supergroup OSp(N,d). For the simplest case N = 1,

there is Lthe anticommutator
{Qay @5} = 21" Mud + 10" Mas)ap
{r*,7*} =29
':'h.! 'T*] = a"b (l)
which relales the spinor charge Q, to the generators Map of the space-lime group O{d — 1,2}

In our notation the indices A, B,... range from 0 to d, while a,b {(and g, v) range from 0 to d — 1.

The encrgy operator 1 = M,q is formally posilive (as is quickly shown by a suitable trace
of (1)) and its cxpectation value in a supersymmetric vacuum would be expected to vanish. Yet
two problems suggeét that all is not well with the conventional interpretation and motivate the

present, study.

A) The classical energy 2 = fd?'z/=¢gT} computed by standard procedure does not
have a positive definile integrand (for scalar ficlds) [3] and can have arbiteary sign even in a

supersymmelric vacuum,

B) A computation [5] of the scif-encrgy of free supermultiplets by a ¢-function regularization
technique yielded non-zero results (foe N < 5) in (AdS)4, whereas in flat space there is an exact

cancellation between bogon and lermion contribulions.
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One recent approach Lo the paradox raised by B) was the observalion [6] thal if Q4 is rep-
resented in terms of free ficld creators and annihilators, then the Ilamiltonian operator com-
puted from 1{Q,,Q}} = /I naturally appears in normal ordered form and thus annihilates
the vacuum. 1t was concluded thal the ¢-function regularization calculation violates supersym-
metry. This is also one direet concelusion of the prescent work, but our approach is rather different
from {6]. In a class of two-dimensional supersymmectric theories with interactions we define the
spinot charge @, as an integral of the supercurrent. We then caleulate {Qq, @4} by a method
equivalent to canonical commutation rclations, and oblain space-time generators M5 which are
“improved” with respect to Lthe standard ones by the addition of surface terms. The improved
energy £ = fdz\/—_ng has a non negative integrand which vanishes only in supersymmetric
field configurations. We show that the corresponding operator / has vanishing expectation value
in a supersymmetric vacuum to all orders in perturbation theory. The situation of vacuum energy
in AdS is thus essentially the same as in [lat-space supersymmetry. Some differences, relaled to

vacuum stability and boundary conditions, are discussed in Section IX.
II. The Geometry of (AdS);:

Let us begin the discussion with a quick review of the geometry of {AdS)s which is the
hyperboloid 745y*¥? = a~? cmbedded in R? with Cartesian coordinates y* and flat metric

nag = (+—+). One can introduce intrinsic coordinates ¢, p via

" =a"'sintseccp y'=a"'tanp y? = -a"'costsecp (2)

and the line element induced from the embedding takes the conformally flat form

de® = g, dztdz” = - p(dt’ - dp?) (3)

a2 coa?

The hyperboloid is covered once if one takes —x/2 < p < x/2 and —x < t < = but to aveid
closed timelike curves and to incorporate ficlds of arbitrary Lagrangian mass it is conventional

to pass Lo Lthe covering space by removing the resirictions on Lhe range of &

The non-vanishing Christo{Tel symbols are l‘:’ = I’;, = I}, I', = tan p. With zweibein

Ve = (a cosp)"b': onc can compule the spin connection w@!' = —tanp and ug' = 0. The

curvalure is 2,0 = 02(9”9,, = Yuotup) and Ry, = a¥g,,.-

To formulate supersymmetric theorics one needs the nolion of Killing spinors, which are
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spinors ¢(z) which satisly

D,dz) = -%iaq”c(z) (4)

In the coordinate system and frame uscd here, the solutions of (1) are ¢«(z) = S(z}£ where £, is

a constant spinor and
S(z) = (cos p)~"/?[cos g + i1 sin 5‘“]{:““"3"'2 (5)
which satisfies 5(z)5(z) = 1, with S(z) = '33+(3),73' and
5(z)7#S8(z) = 1"K iy +io* KLy | (6)

where the K4 g are Killing vectors which generate the O(2, 1) isometry group of the hyperboloid,
specifically K.p = K% éa-':—,; and

d
Ko = 5
. . 0O 0
K3 = —sintsin "5 +costcosp5—P {7

d a
K1 == costsin v + sin £ cos pa—p
The first of these is the time translation generator which is conjugate to energy.
ITII. The model and its conserved charges and vacua.

We now come to the model which involves a multiplet of real fields #(z), ¥(z), F(z) with

transformation rules
§¢(z) = &z)¢(z)
69(z) = (—1 Aé(z) + F(z))e(z) (8)
6F(z) = —ie(z) D¥(z)
Using Killing spinors (4) one can show that these ger.icrate the algebra (1). For a general

superpotential W(¢), the kinetic and interaction terms of the following aclion are separately

invariant under (8},
§= % [ d?z/=g{3*$ué + P Dyuyp + F* + 2FW + 2aW — WPy} (9)

All indices are raised by the inverse metric and zwceibcein of {AdS)y; the spin conneetion in D, =

b

A+ 1w 02 is aclually optional for Majorana spiners. The model is easily generalized Lo include
T 2Weab g
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atbitrary numbers of multiplets ¢, ¥, F;. Note that the action depends on the superpotential
W(#) as well as derivatives W’ and W”, and that one obtains the conventional form in the flat

space limit (@ — 0).

The generators of O(2,1) transformations and the supersymmetry charges can be obtained

by the method of Noether's theorem, which yields

Mas = [ do/=sT3K %

(10)
Q= [ ap/=3(e)as 3
with stress tensor and supercurrent
Ty, = 0,80, + {F(1uDy + 10,6 = 9uul5 (08 — ZW(@) +aW(8)] (1)
I* = (26 +W(B)1" (12

where the fermion equation of motion has been used and the auxiliary field F has been eliminated

(see below). The stress tensor satisfies the expected covariant conservation law D*T,, = 0, but

the supercurrent satisfies D,J* = —!}1,.;' ¥ which gives a conserved spinor charge because of
(4)-
The equations of motion are
68
3‘;; = F 4 W(¢) =0
63 i 1 1 e
> ¢+ FW(¢) ~ SW"(¢)wy =0 (13}
&S ,
— ={(i7"D, - W"(¢))v =0
5% '

Any 0O(2,1) invariant vacuum slale has <¢(z)> = conslant, and <P¥> vanishes classically.
Further, < F(z) >== 0 is the signal of a supersymmetry preserving ground state, while <

F(z) >3 0 indicates supersymmetry breaking,

Thus the possible O(2, 1) invariant classical states of Lthe system are critical points of the

polential

V(8) = 5(W(9)) - aW(g) (14
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i.e.,

Vi(g) = W($)(W"(¢) —a) =0

Any root ¢, of W'(¢) = 0 is a possible supersymmetric state, while any root ¢y of W'(¢) = a
is a possible state of broken symmetry. In the latter case W"{¢,) = a is the Lagrangian mass
appropriate to a Goldstone spinor in (AdS)z. The non-zero value is related to the lact that the
covariant divergence of the supercurrent is not zero. (See [7} for a discussion of the 4-dimensional
case.) If neither W/(¢) = 0 nor W"(¢) = a can be satisfied, then the system has no O(2,1)

invariant classical states.

We now note that the scalar terms of the encrgy density in (11) are not necessarily positive, and
for supersymmetric states, the energy density is T3 = V(¢,) = —aW(¢,) which is of arbitrary

sign. This is the situation noted in the introduction.

We still do not know whether the states discussed above are stable. To study this we examine

Mg for small fluctuations hA(z) = ¢(z) — ¢ with Lagrangian mass
V(¢) = W"(¢W"(¢) — a) + W(¢)W"(4) (15)

which can be of any sign. Il V”(¢) < 0 we perform a scaling argument similar to [3]. After
scaling h{z} = (cos p)*h(z) and integration by parts we find that the total energy is convergent
and positive for real A\ = § + /1 + V—:sﬂ so that V”(a) > —1a? is required for stability. One
also finds that h(z) ~ (cos p)* is the fallofl condition of regular solutions of the fluctuation wave
equation A+ V7{¢}h = 0, and that for V”(¢) > —}a? the fluctuation wave functions are
the basis of a unitary irreducible representat.ioﬁ of 0(2,1). For supersymmetric critical points,
W'(¢,) = 0, the stability condition is always satisfied. For non-supersymmetric critical points

the condition becomes W/(¢3)W"(¢3) > —1a? which may or may not be satislied.



V. lmproved Of2, 1) Generators

L.ct us now study the energy functlional

(16)

Moz = % /dpg(aeﬁb)? +1Yvded + (W'(g(;]l‘zc;f:W(qﬁ)}
The scalar part is ol indefinite sign due to the terin —2aW (). towever, we ean take this term,
partially integrale using d, tanp = cos~2 p, complete the square in ,¢ and find a new energy
operalor |
I

5 f dp{(0:8)? + (3,0 + o~ tan pW'(8))® + 1¥y0dc¥h + a2 W'(9)*} (17)

Moz =
which differs from the first by a surface term

Moz = Moa + lim a7 tan p[W(g(¢, p})) + W(e(¢t, - )] (18)

/2 .

Classically, the new cxpansion has the desired property thal the scalar terms in the integrand
arc positive semi-dclinite and vanish only 'fn supersymmetric backgrounds where W'(¢,} = 0. In
such a background we expect Lo deal with field configurations of the form ¢(z) = ¢, + h{z) where
h(z) is a fluctuation ficld which can be large in the interior, but deecays as p+— +£a/2 at the rate
h{x) ~ (cos p)* of regular solulions of the linearized wave equation, i.e., A = § + |a~'W" = J|.
For such flicld configurations Lhe surface term is an irrelevant infinite constant, independent of

the Nuctaation A(z).

In this paper we implicilly consider only Lhe regular solutions of Lhe linearized wave equations.
However, il appears that the irregular solutions A{z) ~ {cos p)* with X = = leT'W” = 1| will
be neeessary when 0 < a7 'W” < 1. A detailed analysis of frec-ficld theory in (AdS)y and
ils relation to stabilily and unilary representalions of (3(2, 1) should still be performed. The
analysis would be similar to the (AdS), analysis ol [3]. However, we expeet that the awkward
improvement procedure there will be supplanted by the present method, and the energy delined

by (17) will be valid Tor both regular and irregular modes.

Weo now wish Lo argue thal Mgy is Lhe “righl” cnergy operator in the quantum theory, and we
wish to proceed in a way which is independent of the coordinatizalion of the {AdS): backgronud
and uniform for 2l generators Mag of O(2,1). Therefore, we caleulale {(),,._Q.ﬂ} Lo determiine

the speeifie form of the G2, 1) generators which appear in (1), For this purpose we compute the
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change of the supereurrent J# of (12) under a supersymmetry transformation with Killing spinor

parameter €(z) = §(z)€. Specifically, we compyte
b 2" = 1[EQ,¥J¥] (19)

using (8) and {12). Il we writc Qo in morc covariaat forn by integrating over a spacelike surlace

¥ with normal surface clement dE, = €,,dz* (with ¢,, a tensor, i.c., ¢gy = /—9g), then
b / 4L, 7 J* =i[ZQ, T Q]
= 1€,{Qar@s}E5 (20)

The computation of 6,&J# involves some lancy Ficrz-work, repeated use of (1), and the
identity D¥D, K* = —a®K*# for Killing vectors of {AdS)s. Tolal derivative boundary terms are

nol discarded. The result is
6,[0!‘2,?’.]" = ZiIdBu{qut’T“" -a"D,(WD"(tq“c’))} (21)

Since #y#¢ is a lincar combination of O(2,1) Killing vectors, sce (6), with the matrices v*, and

1o*® which occur in (1), we can identify the O(2, 1) generators. of the superalgebra, as
Map = /dE,,{KAB,,T"" -a”'D (WD"K'%5)} (22)

Thus we sce Lhat the O(2, 1) generators Mg of the superalgebra differ from thosc constructed
by Nocther's theorem (10) by the second term in (22) which is a covariant boundary term (but

which is kept as a contribution Lo the integrand of Mg in all of the following).

-1t is well known that the eanonical stress tensor T can be improved by adding the quantity
AT* = (ght*Q — D* DY + R*)S (23)

which is identically conserved in (AdS)4 for any scalar Tunction § of the ficlds, and thal this
contribules only a boundary term to the O(d — 1,2) charges [3]. llowever, the boundary Lerm
in (22) can only be written in the foem (23), with § ~ W(¢), plus an extra boundary term,
proporiional to Dy(!\'!,fui)"lW) which is of superpotential form and thus identically conserved.

The supereurrent can also be improved by adding
K] .
AP = 0“”(’),, b ‘l:;‘}'y)bll-' ’ (2‘)
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which identically satisfics the relevant “conservation” cquation for any scalar §, and adds a bound-
ary term to the supercharge ). The supercurrent improvemnent wounld change the generators
Mag by Turther boundary terms which we have not computed in detail, since physicallly salis-

faclory Map have been obtlained wilthout such improvement.

Let us return to (22) and note that the encrgy operator Mgz becornes identical with (17)
when evaluated in the previous coordinate system. The scalar contribulion to the energy density
therefore has the desired positivily propertics. It may be possible to prove posilivily in a fully
covariant manner, i.c, for all spacclike surfaces and all globally positive timelike Killing vectors,

but fer the present we will be content wilth the previous coordinate dependent proof.

V. < Map > Vanishes!

The next step is to show that the vacuum expectation values < M g > of the operators (22)
vanish in a supersymmetric vacsum. We will do this covariantly Lo all orders in perturbation
theory, but in a formal manner which does nol take the nccessary care wilh ultraviolel diver-
gences. [n the next section we will perform a more careful regulated calculation to one-loop order
with the same vanishing result. The formal argument rrcquires some theoretical development

which we now begin.

By applying (8) repeatedly we easily derive the transforination properties of Lthe superpotential
operalor W(4(z)}
W =tW'y

W' = [~i AW + W'F — -;-W"Ew]e (25)
S(W'F - %w”W) = —i( W' + W' D)

which shows that W, W'(¢}s and W'F — .‘;W"qbw/) transform as the ¢, ¥ and /' components of a

composile multiplet. Using (4), the second experession in (25) can be conjugated and rewritlen as

i W+ W - %w"w],,, = iSus(2){Q, W(B)Ts} (26)

We now take the vacuum expeclation value of (26), and use Lhe fact thalt 2, < W(é(£)) >=0
as a consequence of (O(2, 1) invariance, and that the expeclalion value of the right side vanishes

i Lhe vaecuum is supersymmelric, which we assume, Finally, we use Lhe operator field equation
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F(z) = ~W'(#(z)), which is correcl because the transformation rules (8) are compatible wilh
this cquation of motion. {Indeed, we could have used # = —W! initially in (25) and (26}.) Thus

we have proved Lhat
_ | B
< W(9)" + 3W"(6)ge(z) >=10 (27)

Let us now usc {27) Lo prove that < M4p >= 0. First nole that < T#¥ > = 19" < T8 >
in (AdS)z, because the only 02,1} invariant, conscrved symmetric tensor is the metric g#¥.

Evaluating the trace from (11), and using Lhe spinor ficld cquation in (13}, we find
< TE >=< w2+ %W"$¢ - 2aW >
= -2 < W(¢) > (28)

where (27) is used in the last step. The expectation value of (22) is thus

< Map >= jdzy{KABu <T* >—a"!' <W>D,D"K'g}

=[d2,,{—aK;B <W> +aKhg < W >} (29}
_ o

where we have used. again P*D K* = —a®*K*. Thus < M4z >= 0 in a supersymmetric
vacuurmn beeause of an exact cancellation in the integrand between the contribution of < T#* >
and the contribution of < W >. Since in gencral < W > 3£ 0, and W dclermines the boundary
terms by which M4p and M ag dilfer, we see that there is no reason to expect that the naive

generators M 4 have vanishing vacuum expectation value.

Although the previous argument used formal operator manipulations without regard for
ultraviolet renormalization, we believe that it is entirely correcl for the following reason. The
action (9} can be regularized by adding Pauli-Villars supermulliplets with suilably chosen cou-
plings to Lhe physical fickts. (See [8] for a discussion in flat supeespace.) One would then have
a regularized 7, and W with ultraviolet finite vacuum expeetation values. Eq. (27) would hold
(in a form generalized Lo include couplings to regulator ficlds) and the formal trace manipulation
which leads to (28) would be valid. Thus < Map >= 0 would be correct in the regularized

theory, and, by continuily, would hold in the lunit of large regulalor masses.

VL One loop computation of < Muyp >
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It is Lhis idea which we will now implement in a one-loop ealeulation of < Mg >. We will
first need some information Lo sot up perturbation theory in (AdS),, and for this purpose we

look at the action of the free massive supermulliplet
i e g — — )
S = 3 /d2n\/—g{d“¢d,¢ + oyt Dy — (2 - a,u)¢2 - uy} - {30)

obtained by setting W = 1ud? in (9) and climinaling F.

The Feynman propagator Cg(z,z') = =1 < T¢(z)¢(z') > satisfies

(0 + m*)Cr(z,2') = —(-9)"¥6(z, ') (31)

As in all maximally symmetric spaces, O(2,1) invariance implics that the propagator is a
function of the variable 54gy?y’® where y# (and y'B) are related to z# (and z'#) asin (2). It is

most convenient to define Lthe variable

|
.= Eaﬂ(yA — )2

= %Il — sec psec p'(cos(t — ') — sin psin p')] (32)

which is one-haif the chordal distance between the points y* and 2 on the hyperboloid of unit
scale a = 1, The left side of {31) becomes the hypergeometric equation. One chooses the solution
which has the same bchaviour at spatial infinity as regular solutions of the lree-ficld equation
(O +m?)¢(z) = 0, and one normalizes to reproduce the standard short distance singularity of

two-dimensional field theory. The result is

—iT2(\)

N "2 MM A= Y s |
C(z,z") = = TN w7 MF( N 2hu)
¥ yre0 4_—;[— log(—u) + 29(1) — 29(A} + m>u log(—x) + Ofu?)] (33)
| 1 m?
A= 2 + 3 + pry
where 9(z) = L logl(z). The standard analyticity property of #(a. b;e;2) corresponds Lo the

time ordered Green's function, although the strict notion of lime ordering must be moditied [9)
beeause of the peculiar causal propertics of AdS. The asymplotie Tormula in {33) was obtained

from a standard mathematical relerence [10]. The sealar propagatoer in (AdS ) has been obtained
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lrom similar considerations {11]. The sealar propagator (33) is actually a Legendre lTunction
On—1{1 = 2u), [10].

We also need the spinor propagator. This is casily obtained from the scalar propagalor by
a Ward-Takchaishi identity. This identity is obtained by the standard method of inserling 8
of {30] in a path integral generaling lunctional with sources and performing a supersyminelry

transformation (8). {t is convenicnt to wrile the result as
S(z) < THH(2) > S(z') = (S(2)ir*S(2)3, + p) < Te(z)s(z") >

= (187" Kz — a0 Koy + p) < T(z)e(z') > (34)

where differcntiation is with respect to z, and (6) has been used. Note that (34) relates the spinor

2 = p? —ap. Note that (34) correctly

propagator for mass g Lo the scaiar propagator for mass m
defines the propagator for a fermi field of mass g in {AdS)z, whether or not the theory in which it
appears is supersymmetric. One can verify directly from (34) that (i 0 — ) < T¥(z}¥(z’) >=

_i(_g)-%J(zs z’)'
To calculate < T#* > using Pauli-Villars regularization we take a set of multiplels ¢, v
with mass parameters u;. We Lhen deline

, [ 1 1
< T Sreg= 0 < DubiBbi + HDA — 050607 = 5(ud —ap)el] > (35)

1 )
where the physical multiplet ¢, v appears as ¢g, g in the sum with ¢ = 1 and g = g#. On
dimensional grounds < T, >,y will be [inile provided that the sum rules 2o 0 = Do il =

¥, eip? == 0 hold. Then we can take the trace ind obtain
1 -
< T: >reg= th[(#? -a!‘i) < ¢,2 > +;#{ < 1"5"/’{ >]

=Y eil(nf = o) < ¢ > —pf < 4] >] | (36)

where Lthe regularized form of (34) has been used Lo express < $3 > in Lerms of < ¢* >. We
see that

< T: Zreg= "'uzci"'i < ¢? > (37)

However, by the same method one can ealeulate

< W) >rep= 2&-;«- < ¢l > (38)

t

5 | -
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which is a linite quantity. Thus we find Lhat (28) holds in I-loop erder for all values of the

reguiator mass, This immediately leads to Lthe desired resull, < My g >= 0.

We have not studied the limil of infinite rcgulator mass explicitly, but we anticipate that the
divergence which appears there can be cancelled by adding an inlinite constant counter term Lo
the superpotential. One should note that Lhere is no trace anomaly in this theory. Although
T4 = al for two-dimensional lree ficld theory in a background metric with scalar curvature R,
the real scalar and Majorana spinor liclds contribute to the cocfficient a with equal and opposite

sign.
VII. ¢-Function Calculation of the Vacuum Energy

The I-loop calculation of < Mgg > by means of supersymmetric Pauli-Villars regularization
of < T*¥ > and < W > in the integrand of {22) can be compared with a calculation of the
vacuum cnergy by ¢-function regularization. Since such calculations have been performed [5,13]
only for (AdS)4, we must now perform the calculation in (AdS); in order to compare results
directly. The basic idea is to sum the energy eigenvalues w; of states of a unitary positive-energy

irreducible representation of O(2,1) and to regulate this divergent sum using the ¢-function.

The relevant representations of O(2, 1), or, more precisely, ils universal covering group, are
denoted by a real number wp > % which is the lowest eigenvalue of a~'Mge. The energy
cigenvalues are then spaced by integer with respect to wy, i.e., we have w, = (wg + n) and each
level n = 0,1,2, ... has unit multiplicity. For the free supersymmetric ficld theory (30), with
; > 4, the scalar ficld corresponds to a representation with we = ;, and the fermi ficld to a
represcntation with wo = (g) + }. These representations cambine to form a unitary irreducible

representation of the superalgebra OSp(1,2). For (AdS), the correspondence between free fields
and represcntations of SO(3,2) and OSp(1,4) has been discussed previously {14,15,3].

The regulated self energics of Lhe boson (1) and Lhe fermion {#) are delined by

= -}
fig(wg,z) =a E {wo + n)™* = a¢a(z, wo)

n==0

(39)

oo
. 1 - 1
Erlwp, sy =a ¥ (wo+ =+ 1) = agg(=,we + ;)
n-=Q - -
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and are related to the cxtended Riemann ¢-funetion ¢g as indicaled. The physical values are
delined by analytic continuation to z = —1, where ¢g can be expressed as a Bernoulli polynomial

[16] and we have

t 1
Eg(wp, —1) = §u(—-ug + wg - (—i)
(10)
. 1 1 1 1, 1
Er{wo + 5, —1) = ja(~{wo + 5)2 +(wo+3)—g)
The total self-energy is the difference between these two and we have
1 1

EB(UO, —l) = aﬂ(l’do - Z) (41)

Thus the energy ¢-function method predicts non-zero vacuum energy in a supersymmetric vacuum.
We conclude that this method of regularization breaks supersymmetry. ¥For the massiess super-
multiplets [5] of gauged extended supergravity for d = 4 and N 2> 5 and lor the short repre-
sentations [13] of OSp(8, 4) which occur in the round Sy Kaluza-Klein solution of D == 11 super-
gravily, the ¢-function mecthod does give zero vacuum energy. We believe that this indicates that
the vacuum energy is less singular in these particular ficld theorics and thercfore less sensitive
to the method of calculation. Calculations of the SO(N) coupling constant renormalization {16]

support this interpretation.
VIII. On the partition function:

Let us note that an argument very similar to that of Section V was uscd in {1] to show that
the value of the partition function Z is independent of the Yukawa coupling constant {or the
Wess-Zumino model in d = 4 Minkowski space. In flat space log Z = ~t fdiz€, where ¢ is the
vacuum cnergy density. Since £ is independent of the Yukawa coupling, it has the same value in
the interacling theory (g 3£ 0) as in the free theory (g = 0). In the free theory € vanishes since

there is an explicit cancellalion between boson and fermion mode energics..

In AdS there is no simple relation between the partilion Munction Z and the vacuum energy
density €. They are simply different quantilies. In Section V we showed that & = 0 in
supersymmelric vacua. Now we study the partition function and show that it depends on the
interaction in AdS (although interaction independence is recovered in the flat limit a = 0). As

one application of this general result we show Lhat the partition function of the lree massive

2]



supersymmetrie theory (30) depends on the mass u. This lact gives some information about the

ratio of determinants of the boson and fermion wave operators in anti-de-Sitter space.
Let us define the partition function
Z = /dtbe‘s (42)

where S is the action (9) and the measure is d® = [1; d¢(z)dy,(z)dF(z). Under a small variation
§W of the superpotential, Z changes by

62 =i f dde's f d?z\/=g{i BEW + FEW(¢) — %m"(qs)w + a6W(9)} (43)

where the first terms can be added to the variational derivative because it vanishes in an 0(2,1)
invariant state. The sum of the first three terms can be recognized as the transform of the ¥
component of a composite supermuiliplet as in (25) with W replaced by 6W. Eq. (26) then

implies that this sum vanishes in a supersymmetric state, so that our basic formula reduces to
6Z =ia f dde'S f d?z/=g6W(¢(z)) (44)

Let us apply this formula to the free theory {30} with W = Llug?, and obtain

z _ 1. / is f 2 2
9, = 3 dde’” [ d*z/—-go*(z) (45)
This indicates that boson and fermion determinants satisly
..a_lo def{ +u? —ap)] _ iafdzz\/— < ¢*(z) > (48)
3 % detli p—p) | g

Thus the ratio of determinants in (AdS); is both ultraviolet and volume divergent.

IX. Summary

What we have done in this paper is to show that the O(2,1) generators which appear in
the supersymmelry anticommutalor (1) are given by (22). They differ by a covariant surface
term from Lhe naive generators (£0). The improved energy operator has the properties which
we would have expected from fat-space supersymmetry. The classical energy densily is positive
semi deflinite and vanishes only in supersymmetrie configurations. Quantum mechanically the

improved vacuum energy vanishes Lo all orders if supersyminelry holds.
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Nevertheless, there are still some differences between flat space and AdS supersymmetry.
In flat space il there is a supcrsymmetric minimum of the potential, then any supersymmetry
breaking stationary point has higher energy and is ungtable. In AdS the O(2,1) invariant states
correspond to stationary points of the scalar potential V(9) = 1(W'(¢))? — aW(¢). For some
potentials there are supersymmetry breaking states which lie above supersymmetric ones. In
other potentials the breaking states lie below the supersymmetric ones. The relative ordering
of states in the potential V(¢) (and the ordering of constant configurations in the improved
energy density (17)) is at best an incomplete guide to their relative stability. Supersymmetric
states are always stable, since the energy of fluctuations about them is globally positive. Non-
supersymmetric st:ates may or may not be stable depending on details of the potential. The basic
reason this situation is different from that in flat space has little to do with supersymmetry. It
is the fact that penetration of a potential. barrier does not always occur in AdS for geometrical
reasons [{8]. Bubble formation is not always energetically possible. One consequence of this is
that a model of the type (9) can actually have several stable ground states, some supersymmetric

and some not.

The present results have been established only for OSp(1, 2) supersymmetry in D = 2. The

extension of these ideas to OSp(1, 4} supersymmetry in four dimensions is currently in progress.
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